Back to Search Start Over

Quantitative analysis of Nb in solid solution in low carbon steels by atom probe tomography and inductively coupled plasma mass spectroscopy.

Authors :
Garcia, Maina Portella
Chen, Hansheng
Eizadjou, Mehdi
Lim, Bryan
Ringer, Simon P.
Barbaro, Frank J.
Source :
Materials Characterization. Sep2021, Vol. 179, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

The influence of solute drag effects on austenite grain growth in microalloyed steels has been overshadowed by the well-established phenomenon of Zener pinning associated with a dispersion of fine precipitates. Enhanced toughness in the weld heat-affected zone (HAZ) of high Nb steels suggests that microalloying effects are still operative at peak temperatures even beyond known precipitate stability. As the cornerstone for unveiling the solute drag effect, the solute concentration in the matrix should be accurately measured. In this work, we compared inductively coupled plasma mass spectroscopy (ICP-MS) and atom probe tomography (APT) in determining the extent of Nb dissolution as a function of increasing temperature in two commercial American Petroleum Institute steel grades with different levels of Nb and marked variations in weld HAZ toughness. Both techniques demonstrated that the majority of Nb exists in solid solution at the peak temperatures. APT provided a more consistent determination of soluble Nb, in a better agreement with thermodynamic calculations, whilst ICP-MS underestimated the concentration of Nb in the matrix. This work provides valuable insights in determining soluble Nb concentration in steels. [Display omitted] • Nb content in solid solution was analysed as a function of temperature using ICP-MS and APT techniques. • Experimental results were compared with thermodynamic simulations. • High Nb steel provides increased levels of soluble Nb following thermal cycles. • APT provided a more consistently reliable determination of soluble Nb. • ICP-MS qualitatively recorded Nb dissolution as a function of temperature but in general recorded lower values due to limitations in sample preparation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10445803
Volume :
179
Database :
Academic Search Index
Journal :
Materials Characterization
Publication Type :
Academic Journal
Accession number :
152232742
Full Text :
https://doi.org/10.1016/j.matchar.2021.111308