Back to Search
Start Over
Glucagon Like Peptide-1 Receptor Agonists Alter Pancreatic and Hepatic Histology and Regulation of Endoplasmic Reticulum Stress in High-fat Diet Mouse Model.
- Source :
-
Experimental & Clinical Endocrinology & Diabetes . 2021, Vol. 129 Issue 9, p625-633. 9p. - Publication Year :
- 2021
-
Abstract
- Background Obesity is a major health problem worldwide, and non-alcoholic fatty pancreas disease (NAFPD) and non-alcoholic fatty liver disease (NAFLD) are obesity-associated complications. Liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, has been approved for treatment of obesity. We aimed to evaluate the therapeutic effects of liraglutide on the complications through its regulation of endoplasmic reticulum (ER) stress. Methods A high-fat diet mouse model was established in C57BL/6J mice. Two groups of mice were fed a high-fat diet with 60% fat for 16 weeks and control mice were fed standard chow. A four-week 0.6 mg/kg/day liraglutide treatment was started in one high-fat diet group after 12 weeks of the high-fat diet. After sacrificing the mice, pancreatic and hepatic tissues were prepared for western blot and immunohistochemistry for ER stress proteins, including activating transcription factor 4 (ATF4), caspase 12, C/EBP homologous protein (CHOP) eukaryotic initiation factor 2 α (eIF2α), glucose regulated protein (GRP) 78 and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Results Liraglutide significantly decreased body weight gained by mice consuming a high-fat diet (27.6 g vs. 34.5 g, P<0.001), and levels of all ER proteins increased significantly in both the pancreas and liver (all P<0.05). Expression of most ER stress proteins in pancreatic tissue correlated with disease scores of NAFLD (all P<0.05). However, no significant differences were found in pancreatic ATF 4 expression between mice without NAFLD, and those with early non-alcoholic steatohepatitis (NASH) and fibrotic NASH (P=0.122). Conclusion Liraglutide may reduce the severity of NAFPD and NAFLD through regulating the ER stress pathway and downstream apoptosis signaling. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09477349
- Volume :
- 129
- Issue :
- 9
- Database :
- Academic Search Index
- Journal :
- Experimental & Clinical Endocrinology & Diabetes
- Publication Type :
- Academic Journal
- Accession number :
- 152246580
- Full Text :
- https://doi.org/10.1055/a-1240-4936