Back to Search
Start Over
Forecasting Water Quality Index in Groundwater Using Artificial Neural Network.
- Source :
-
Energies (19961073) . Sep2021, Vol. 14 Issue 18, p5875-5875. 1p. - Publication Year :
- 2021
-
Abstract
- Groundwater quality monitoring in the vicinity of drilling sites is crucial for the protection of water resources. Selected physicochemical parameters of waters were marked in the study. The water was collected from 19 wells located close to a shale gas extraction site. The water quality index was determined from the obtained parameters. A secondary objective of the study was to test the capacity of the artificial neural network (ANN) methods to model the water quality index in groundwater. The number of ANN input parameters was optimized and limited to seven, which was derived using a multiple regression model. Subsequently, using the stepwise regression method, models with ever fewer variables were tested. The best parameters were obtained for a network with five input neurons (electrical conductivity, pH as well as calcium, magnesium and sodium ions), in addition to five neurons in the hidden layer. The results showed that the use of the parameters is a convenient approach to modeling water quality index with satisfactory and appropriate accuracy. Artificial neural network methods exhibited the capacity to predict water quality index at the desirable level of accuracy (RMSE = 0.651258, R = 0.9992 and R2 = 0.9984). Neural network models can thus be used to directly predict the quality of groundwater, particularly in industrial areas. This proposed method, using advanced artificial intelligence, can aid in water treatment and management. The novelty of these studies is the use of the ANN network to forecast WQI groundwater in an area in eastern Poland that was not previously studied—in Lublin. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 14
- Issue :
- 18
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 152657041
- Full Text :
- https://doi.org/10.3390/en14185875