Back to Search Start Over

Dissipation and Distribution of Picarbutrazox Residue Following Spraying with an Unmanned Aerial Vehicle on Chinese Cabbage (Brassica campestris var. pekinensis).

Authors :
Kim, Chang Jo
Jeong, Won Tae
Kyung, Kee Sung
Lee, Hee-Dong
Kim, Danbi
Song, Ho Sung
Kang, Younkoo
Noh, Hyun Ho
Source :
Molecules. Sep2021, Vol. 26 Issue 18, p5671. 1p.
Publication Year :
2021

Abstract

We assessed the residual distribution and temporal trend of picarbutrazox sprayed by agricultural multicopters on Chinese cabbage and considered fortification levels and flying speeds. In plot 2, 14 days after the last spraying, the residues decreased by ~91.3% compared with those in the samples on day 0. The residues in the crops decreased by ~40.8% of the initial concentration owing to growth (dilution effect) and by ~50.6% after excluding the dilution effect. As the flight speed increased, picarbutrazox residues decreased (p < 0.05, least significant deviation [LSD]). At 2 m s−1 flight speed, the residual distribution differed from the dilution rate of the spraying solution. The average range of picarbutrazox residues at all sampling points was 0.007 to 0.486, below the limit of quantitation −0.395, 0.005–0.316, and 0.005–0.289 mg kg−1 in plots 1, 2, 3, and 4, respectively, showing significant differences (p < 0.05, LSD). These results indicated that the residual distribution of picarbutrazox sprayed by using a multicopter on the Chinese cabbages was not uniform. However, the residues were less than the maximum residue limit in all plots. Accordingly, picarbutrazox was considered to have a low risk to human health if it was sprayed on cabbage according to the recommended spraying conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
18
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
152692157
Full Text :
https://doi.org/10.3390/molecules26185671