Back to Search Start Over

Pathogenesis and drug response of iPSC-derived cardiomyocytes from two Brugada syndrome patients with different Nav1.5-subunit mutations.

Authors :
Yue Zhu
Linlin Wang
Chang Cui
Huiyuan Qin
Hongwu Chen
Shaojie Chen
Yongping Lin
Hongyi Cheng
Xiaohong Jiang
Minglong Chen
Source :
Journal of Biomedical Research. Sep2021, Vol. 35 Issue 5, p395-407. 13p.
Publication Year :
2021

Abstract

Brugada syndrome (BrS) is a complex genetic cardiac ion channel disease that causes a high predisposition to sudden cardiac death. Considering that its heterogeneity in clinical manifestations may result from genetic background, the application of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) may help to reveal cell phenotype characteristics underlying different genetic variations. Here, to verify and compare the pathogenicity of mutations (SCN5A c.4213G>A and SCN1B c.590C>T) identified from two BrS patients, we generated two novel BrS iPS cell lines that carried missense mutations in SCN5A or SCN1B, compared their structures and electrophysiology, and evaluated the safety of quinidine in patient-specific iPSCderived CMs. Compared to the control group, BrS-CMs showed a significant reduction in sodium current, prolonged action potential duration, and varying degrees of decreased Vmax, but no structural difference. After applying different concentrations of quinidine, drug-induced cardiotoxicity was not observed within 3-fold unbound effective therapeutic plasma concentration (ETPC). The data presented proved that iPSC-CMs with variants in SCN5A c.4213G>A or SCN1B c.590C>T are able to recapitulate single-cell phenotype features of BrS and respond appropriately to quinidine without increasing incidence of arrhythmic events. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16748301
Volume :
35
Issue :
5
Database :
Academic Search Index
Journal :
Journal of Biomedical Research
Publication Type :
Academic Journal
Accession number :
153141003
Full Text :
https://doi.org/10.7555/JBR.35.20210045