Back to Search Start Over

Melatonin modulates metabolic remodeling in HNSCC by suppressing MTHFD1L‐formate axis.

Authors :
Cui, Li
Zhao, Xinyuan
Jin, Zhenning
Wang, Hailin
Yang, Shun‐Fa
Hu, Shen
Source :
Journal of Pineal Research. Dec2021, Vol. 71 Issue 4, p1-21. 21p.
Publication Year :
2021

Abstract

Metabolic remodeling is now widely recognized as a hallmark of cancer, yet its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. In this study, metabolomic analysis of melatonin‐treated HNSCC cell lines revealed that exogenous melatonin inhibited many important metabolic pathways including folate cycle in HNSCC cells. Methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L), a metabolic enzyme of the folate cycle regulating the production of formate, was identified as a downstream target of melatonin. MTHFD1L was found to be markedly upregulated in HNSCC, and MTHFD1L overexpression was significantly associated with unfavorable clinical outcome of HNSCC patients. In addition, MTHFD1L promoted HNSCC progression in vitro and in vivo and reversed the oncostatic effects of exogenous melatonin. More importantly, the malignant phenotypes suppressed by knockdown of MTHFD1L or exogenous melatonin could be partially rescued by formate. Furthermore, we found that melatonin inhibited the expression of MTHFD1L in HNSCC cells through the downregulation of cyclic AMP‐responsive element‐binding protein 1 (CREB1) phosphorylation. Lastly, this novel regulatory axis of melatonin‐p‐CREB1‐MTHFD1L‐formate was also verified in HNSCC tissues. Collectively, our findings have demonstrated that MTHFD1L‐formate axis promotes HNSCC progression and melatonin inhibits HNSCC progression through CREB1‐mediated downregulation of MTHFD1L and formate. These findings have revealed new metabolic mechanisms in HNSCC and may provide novel insights on the therapeutic intervention of HNSCC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
07423098
Volume :
71
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Pineal Research
Publication Type :
Academic Journal
Accession number :
153246521
Full Text :
https://doi.org/10.1111/jpi.12767