Back to Search Start Over

An Online Torque Ripple Minimization Technique for IPMSM Drives: Fuzzy System-Based d -Axis Current Design Approach.

Authors :
Basit, Bilal Abdul
Choi, Han Ho
Jung, Jin-Woo
Source :
IEEE Transactions on Industrial Electronics. Dec2021, Vol. 68 Issue 12, p11794-11805. 12p.
Publication Year :
2021

Abstract

This article proposes an online torque ripple minimization (TRM) technique using a fuzzy system (FS)-based d-axis current design for interior permanent magnet synchronous motor (IPMSM) drives. Existing control-based TRM techniques generally employ optimization algorithms to design the dq-axis currents that attenuate the torque ripples. However, complex iterations applied for the optimization algorithms increase computational complexity, which limits the applicability of such TRM techniques under transient state of the IPMSM drives. Unlike with existing methods, the proposed TRM technique designs reference d-axis current using a computationally efficient algorithm and remarkably minimizes the torque ripples. Moreover, the reference d-axis current is designed online based on an FS to keep the stator current of the IPMSM inside the rated value, especially at the transient state. The proposed TRM strategy is validated through simulation and experimental investigations by using a MATLAB/Simulink software and a prototype IPMSM drive with TI TMS320F28335 digital signal processor. Comparative theoretical and experimental investigations prove that the proposed TRM technique is computationally efficient and ensures more reduced ripples in the electromagnetic torque and dq-axis currents with d-axis current significantly close to zero than conventional maximum torque per ampere based technique without TRM and conventional current control-based TRM technique under critical load conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
68
Issue :
12
Database :
Academic Search Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
153301264
Full Text :
https://doi.org/10.1109/TIE.2020.3044807