Back to Search
Start Over
Matrix Manipulation of Directly‐Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering.
- Source :
-
Advanced Functional Materials . 11/3/2021, Vol. 31 Issue 45, p1-9. 9p. - Publication Year :
- 2021
-
Abstract
- The direct‐synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low‐cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination‐engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power‐conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large‐area low‐cost optoelectronic devices. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1616301X
- Volume :
- 31
- Issue :
- 45
- Database :
- Academic Search Index
- Journal :
- Advanced Functional Materials
- Publication Type :
- Academic Journal
- Accession number :
- 153314335
- Full Text :
- https://doi.org/10.1002/adfm.202104457