Back to Search Start Over

Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice.

Authors :
Hagiwara, Hiroko
Sakimura, Kenji
Abe, Manabu
Itoi, Keiichi
Kamiya, Yoshinori
Akema, Tatsuo
Funabashi, Toshiya
Source :
Brain Research. Dec2021, Vol. 1773, pN.PAG-N.PAG. 1p.
Publication Year :
2021

Abstract

• Venus fluorescent cells in the dl BST were CRH neurons in CRF-Venus ΔNeo mice. • Voltage-clamp was applied to investigate CRH neurons in the dl BST after formalin injection. • Formalin increased the frequency of mEPSCs in CRH neurons only in females. • In both males and females, mIPSCs in CRH neurons were not changed after formalin injection. • Interphase in formalin test increased synaptic input to CRH neurons of the dl BST in females. We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5–15 min after formalin injection) but not during the later phase (phase 2, 15–60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0–5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00068993
Volume :
1773
Database :
Academic Search Index
Journal :
Brain Research
Publication Type :
Academic Journal
Accession number :
153451786
Full Text :
https://doi.org/10.1016/j.brainres.2021.147688