Back to Search Start Over

3‐D Modeling of Ultrathin Solar Cells with Nanostructured Dielectric Passivation: Case Study of Chalcogenide Solar Cells.

Authors :
Raja, Waseem
Aydin, Erkan
Allen, Thomas G.
De Wolf, Stefaan
Source :
Advanced Theory & Simulations. Nov2021, Vol. 4 Issue 11, p1-8. 8p.
Publication Year :
2021

Abstract

Ultrathin solar cells can be a path forward to low‐cost photovoltaics due to their reduced material consumption and shorter required deposition times. With excellent surface passivation, such devices may feature higher open‐circuit voltages (VOC). However, their short‐circuit current density (JSC) may be reduced due to decreased light absorption. This mandates implementation of efficient light‐trapping structures. To design efficient ultrathin solar cells that combine surface‐passivation and light‐trapping features, accurate 3‐D modeling is necessary. To this end, a novel 3‐D optoelectrical finite‐element model is developed to analyze the performance of ultrathin solar cells. The model is applied to the case of ultrathin (<500 nm) chalcogenide solar cells (copper indium gallium (di) selenide, CIGSe), rear‐passivated with nanostructured Al2O3 to circumvent optical and electrical losses. It is found that such a nanopatterned dielectric passivation scheme enhances broadband light‐trapping with reduced rear‐surface recombination, resulting in an absolute power conversion efficiency enhancement of 3.9%, compared to cells without passivation structure. Overall, the work shows how 3‐D finite element modeling can aid in analyzing and developing new optical and electrical solar cell designs for ultrathin solar cells such as those based on chalcogenides and perovskites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25130390
Volume :
4
Issue :
11
Database :
Academic Search Index
Journal :
Advanced Theory & Simulations
Publication Type :
Academic Journal
Accession number :
153480283
Full Text :
https://doi.org/10.1002/adts.202100191