Back to Search Start Over

Intercalation-induced partial exfoliation of NiFe LDHs with abundant active edge sites for highly enhanced oxygen evolution reaction.

Authors :
Xu, Hanwen
Zhang, Wen-Da
Liu, Jiangyong
Yao, Yang
Yan, Xiaodong
Gu, Zhi-Guo
Source :
Journal of Colloid & Interface Science. Feb2022:Part 2, Vol. 607, p1353-1361. 9p.
Publication Year :
2022

Abstract

Intercalation-induced partial exfoliation of NiFe LDHs with tunable interlayer space has been achieved by a scalable synthesis method, and the optimal NiFe LDHs show an overpotential of 225 mV at 10 mA cm−2 and a small Tafel slope of 43 mA dec−1. [Display omitted] Edge sites and interlayer space of NiFe layered double hydroxides (LDHs) play an important role in water oxidation. However, the combined effect of interlayer expansion and partial exfoliation on the catalytic activity is yet to be investigated. Herein, scalable synthesis of partially exfoliated citrate-intercalated NiFe LDHs with tunable interlayer space have been achieved. The effect of citrate concentration on the phase, morphology, surface elemental composition, electronic states of surface metals, and electrochemical properties are comprehensively studied. The unique structure results in improved intrinsic catalytic activity and abundant active edge sites for oxygen evolution reaction. The optimal NiFe LDHs show an overpotential of 225 mV at 10 mA cm−2, which is much smaller than that (∼305 mV) of the single-layer NiFe LDH nanosheets reported in the literature. The high catalytic activity can be mainly attributed to the combined effect between the enlarged interlayer space and the partial exfoliation/nanosheet thickness. That is, the interlayer space is related to the reaction kinetics/mechanism, while the degree of exfoliation affects the magnitude of the current density at a certain potential. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
607
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
153526892
Full Text :
https://doi.org/10.1016/j.jcis.2021.09.105