Back to Search Start Over

A Multi-Agent Reinforcement Learning Approach for Capacity Sharing in Multi-Tenant Scenarios.

Authors :
Vila, Irene
Perez-Romero, Jordi
Sallent, Oriol
Umbert, Anna
Source :
IEEE Transactions on Vehicular Technology. Sep2021, Vol. 70 Issue 9, p9450-9465. 16p.
Publication Year :
2021

Abstract

5G is envisioned to simultaneously provide diverse service types with heterogeneous needs under very different application scenarios and business models. Therefore, network slicing is included as a key feature of the 5G architecture to allow sharing a common infrastructure among different tenants, such as mobile communication providers, vertical market players, etc. In order to provide the Radio Access Network (RAN) with network slicing capabilities, mechanisms that efficiently distribute the available capacity among the different tenants while satisfying their needs are required. For this purpose, this paper proposes a multi-agent reinforcement learning approach for RAN capacity sharing. It makes use of the Deep Q-Network algorithm in a way that each agent is associated to a different tenant and learns the capacity to be provided to this tenant in each cell while ensuring that the service level agreements are satisfied and that the available radio resources are efficiently used. The consideration of multiple agents contributes to a better scalability and higher learning speed in comparison to single-agent approaches. In this respect, results show that the policy learnt by the agent of one tenant can be generalised and directly applied by other agents, thus reducing the complexity of the training and making the proposed solution easily scalable, e.g., to add new tenants in the system. The proposed approach is well aligned with the on-going 3GPP standardization work and guidelines for the parametrization of the solution are provided, thus enforcing its practical applicability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
70
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
153712056
Full Text :
https://doi.org/10.1109/TVT.2021.3099557