Back to Search Start Over

Robust Iterative Learning Control of 2-D Linear Discrete FMMII Systems Subject to Iteration-Dependent Uncertainties.

Authors :
Wan, Kai
Li, Xiao-Dong
Source :
IEEE Transactions on Systems, Man & Cybernetics. Systems. Oct2021, Vol. 51 Issue 10, p5949-5961. 13p.
Publication Year :
2021

Abstract

In this article, robust and convergent properties of iterative learning control (ILC) laws are investigated for two kinds of two-dimensional (2-D) linear discrete systems (LDS) in the second Fornasini–Marchesini’s model (FMMII). The iteration-dependent uncertainties in reference trajectories, boundary states, and disturbances are considered in the ILC designs of 2-D FMMII. By virtue of the lifting matrix/vector technique, the ILC processes of two kinds of 2-D FMMII are transformed into 2-D linear inequalities. As a result, robust and convergent conditions are obtained for the proposed ILC laws. It is theoretically proved that by using the proposed ILC laws, under the discussed iteration-dependent uncertainties, the ILC tracking errors of 2-D FMMII can be driven into a residual range, the bound of which is relevant to the bound parameters of uncertainties. In particular, when the iteration-dependent uncertainties of 2-D FMMII are progressively convergent in iteration domain, an accurate tracking to the desired reference trajectory can be realized except at the boundaries. Numerical simulations are used to illustrate the validity and feasibility of the designed ILC laws. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21682216
Volume :
51
Issue :
10
Database :
Academic Search Index
Journal :
IEEE Transactions on Systems, Man & Cybernetics. Systems
Publication Type :
Academic Journal
Accession number :
153713411
Full Text :
https://doi.org/10.1109/TSMC.2019.2957052