Back to Search Start Over

Adaptive Sliding Mode Control for Uncertain Active Suspension Systems With Prescribed Performance.

Authors :
Liu, Yan-Jun
Chen, Hao
Source :
IEEE Transactions on Systems, Man & Cybernetics. Systems. Oct2021, Vol. 51 Issue 10, p6414-6422. 9p.
Publication Year :
2021

Abstract

In this article, the adaptive sliding mode (ASM) control scheme of half-car active suspension systems with prescribed performance is studied. Because of the affected by model uncertainty, time-varying parameter, pavement roughness excitation, etc., the study of suspension systems can be regarded as the multivariable nonlinear control problem. First of all, the prescribed performance function (PPF) is applied to constrain the displacement and pitch angle of the suspension systems to ensure the transient and steady-state suspension responses. Second, an integral terminal sliding mode control method with strong robustness is put forward, which can make the system converge rapidly in a finite-time when it is far from the equilibrium point, solve the singularity problem in the control process, and reduce the chattering phenomenon in the traditional sliding mode control. Then, the neural networks (NNs) approximation characteristics are used to deal with unknown items in the design of the controller, and the Lyapunov stability theory is employed to analyze the stability of the closed-loop system. In the end, the comparative simulation results demonstrate the feasibility and effectiveness of the proposed control scheme. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21682216
Volume :
51
Issue :
10
Database :
Academic Search Index
Journal :
IEEE Transactions on Systems, Man & Cybernetics. Systems
Publication Type :
Academic Journal
Accession number :
153713453
Full Text :
https://doi.org/10.1109/TSMC.2019.2961927