Back to Search Start Over

Pistis: Issuing Trusted and Authorized Certificates With Distributed Ledger and TEE.

Authors :
Li, Zecheng
Wu, Haotian
Lao, Lap Hou
Guo, Songtao
Yang, Yuanyuan
Xiao, Bin
Source :
IEEE Transactions on Parallel & Distributed Systems. Jul2022, Vol. 33 Issue 7, p1636-1649. 14p.
Publication Year :
2022

Abstract

The security of HTTPS fundamentally relies on SSL/TLS certificates issued by Certificate Authorities (CAs), which, however, are vulnerable to be compromised to issue unauthorized certificates (i.e., certificates issued without domains’ permission). Current countermeasures such as Certificate Transparency (CT) can only detect unauthorized certificates rather than preventing them. In this article, we present Pistis, a framework for issuing authorized and trusted certificates with the distributed ledger and Trusted Execution Environment (TEE) technology. In Pistis, TEE nodes validate whether the domain in a requested certificate passes the domain ownership validation (i.e., under corresponding applicants’ control) and submit attested results to a smart contract in the distributed ledger. The smart contract issues a certificate to the applicant when an attested result shows a pass. Therefore, Pistis can ensure its issued certificates are authorized due to the domain ownership validation mechanism in the TEE. Furthermore, as the issued certificates are stored in a Merkle Patricia Tree (MPT) in Pistis, they are trusted and can be verified by a normal user easily. The security of Pistis is formally proved in the Universally Composable (UC) framework. Compared with state-of-the-art, Pistis avoids potential damages by preventing unauthorized certificates from issuing. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*CONTRACTS
*BLOCKCHAINS

Details

Language :
English
ISSN :
10459219
Volume :
33
Issue :
7
Database :
Academic Search Index
Journal :
IEEE Transactions on Parallel & Distributed Systems
Publication Type :
Academic Journal
Accession number :
153764067
Full Text :
https://doi.org/10.1109/TPDS.2021.3121562