Back to Search Start Over

Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an OVA@DDAB/PLGA nano-vaccine.

Authors :
Han, Shulan
Ma, Wenyan
Jiang, Dawei
Sutherlin, Logan
Zhang, Jing
Lu, Yu
Huo, Nan
Chen, Zhao
Engle, Jonathan W.
Wang, Yanping
Xu, Xiaojie
Kang, Lei
Cai, Weibo
Wang, Lianyan
Source :
Journal of Nanobiotechnology. 11/27/2021, Vol. 19 Issue 1, p1-22. 22p.
Publication Year :
2021

Abstract

Background: Poly(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles have potential applications as a vaccine adjuvant and delivery system due to its unique advantages as biodegradability and biocompatibility. Experimental: We fabricated cationic solid lipid nanoparticles using PLGA and dimethyl-dioctadecyl-ammonium bromide (DDAB), followed by loading of model antigen OVA (antigen ovalbumin, OVA257-264) to form an OVA@DDAB/PLGA nano-vaccine. And we investigated the intracellular signaling pathway in dendritic cells in vitro and antigen transport pathway and immune response in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. Results: In vitro experiments revealed that the antigen uptake of BMDCs after nanovaccine incubation was two times higher than pure OVA or OVA@Al at 12 h. The BMDCs were well activated by p38 MAPK signaling pathway. Furthermore, the nano-vaccine induced antigen escape from lysosome into cytoplasm with 10 times increased cross-presentation activity than those of OVA or OVA@Al. Regarding the transport of antigen into draining lymph nodes (LNs), the nano-vaccine could rapidly transfer antigen to LNs by passive lymphatic drainage and active DC transport. The antigen+ cells in inguinal/popliteal LNs for the nano-vaccine were increased over two folds comparing to OVA@Al and OVA at 12 h. Moreover, the antigen of nano-vaccine stayed in LNs for over 7 days, germinal center formation over two folds higher than those of OVA@Al and OVA. After immunization, the nano-vaccine induced a much higher ratio of IgG2c/IgG1 than OVA@Al. It also effectively activated CD4+ T, CD8+ T and B cells for immune memory with a strong cellular response. Conclusion: These results indicated that DDAB/PLGA NP was a potent platform to improve vaccine immunogenicity by p38 signaling pathway in BMDCs, enhancing transport of antigens to LNs, and higher immunity response. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14773155
Volume :
19
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
153818335
Full Text :
https://doi.org/10.1186/s12951-021-01116-8