Back to Search Start Over

Amplification of spatially isolated adenosine pathway by tumor–macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma.

Authors :
Lu, Jia-Cheng
Zhang, Peng-Fei
Huang, Xiao-Yong
Guo, Xiao-Jun
Gao, Chao
Zeng, Hai-Ying
Zheng, Yi-Min
Wang, Si-Wei
Cai, Jia-Bin
Sun, Qi-Man
Shi, Ying-Hong
Zhou, Jian
Ke, Ai-Wu
Shi, Guo-Ming
Fan, Jia
Source :
Journal of Hematology & Oncology. 11/27/2021, Vol. 14 Issue 1, p1-20. 20p.
Publication Year :
2021

Abstract

Background: Immune checkpoint blockade resistance narrows the efficacy of cancer immunotherapies, but the underlying mechanism remains elusive. Delineating the inherent mechanisms of anti-PD1 resistance is important to improve outcome of patients with advanced HCC. Method: The level of cricTMEM181 was measured in HCC patients with anti-PD1 therapy by RNA sequencing and then confirmed by qPCR and Sanger sequencing. Immune status in tumor microenvironment of HCC patients or mice models was evaluated by flow cytometry and IHC. Exosomes from HCC cell lines were isolated by ultracentrifugation, and their internalization by macrophage was confirmed by immunofluorescence. The underlying mechanism of HCC-derived exosomal circTMEM181 to macrophage was confirmed by SILAC, RNA FISH and RNA immunoprecipitation. The ATP–ADO pathway amplified by HCC–macrophage interaction was evaluated through ATP, AMP and ADO measurement and macrophage-specific CD39 knockout mice. The role of circTMEM181 in anti-PD1 therapy and its clinical significance were also determined in our retrospective HCC cohorts. Results: Here, we found that circTMEM181 was elevated in hepatocellular carcinoma (HCC) patients responding poorly to anti-PD1 therapy and in HCC patients with a poor prognosis after operation. Moreover, we also found that high exosomal circTMEM181 favored the immunosuppressive microenvironment and endowed anti-PD1 resistance in HCC. Mechanistically, exosomal circTMEM181 sponged miR-488-3p and upregulated CD39 expression in macrophages. Using macrophage-specific CD39 knockout mice and pharmacologic approaches, we revealed a novel mode of anti-PD1 resistance in HCC. We discovered that cell-specific CD39 expression in macrophages and CD73 expression in HCC cells synergistically activated the eATP–adenosine pathway and produced more adenosine, thereby impairing CD8+ T cell function and driving anti-PD1 resistance. Conclusion: In summary, HCC-derived exosomal circTMEM181 contributes to immunosuppression and anti-PD1 resistance by elevating CD39 expression, and inhibiting the ATP–adenosine pathway by targeting CD39 on macrophages can rescue anti-PD1 therapy resistance in HCC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17568722
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Hematology & Oncology
Publication Type :
Academic Journal
Accession number :
153818553
Full Text :
https://doi.org/10.1186/s13045-021-01207-x