Back to Search
Start Over
Computerized glow curve deconvolution (CGCD): A comparison using asymptotic vs rational approximation in thermoluminescence kinetic models.
- Source :
-
Applied Radiation & Isotopes . Jan2022, Vol. 179, pN.PAG-N.PAG. 1p. - Publication Year :
- 2022
-
Abstract
- In this study an open-source tool GCD Analyzer, based on Microsoft® Excel, for Computerized Glow Curve Deconvolution analysis (CGCD) of thermoluminescence (TL) glow peak has been developed using a more accurate rational approximation. It is capable of deconvolution of glow curves having discrete or continuous trap distribution and can be used for routine as well as emergency radiation dosimetric analysis. This tool has a unique feature of TL glow curve analysis by combining discrete and continuous energy distributions for crystalline, amorphous, and mixed materials. To obtain best values of trap parameters like activation energy (E), frequency factor (s), order of kinetics (b), GCD Analyzer has the capability of analyzing glow curve using selectable individual peak of various physical kinetic models i.e. FOK, SOK, GOK, MOK, and Continuous Traps Distribution (CTD) with subtraction of optional background signal. The residual graph gives a clear visual understanding of the Figure of Merit (F.O.M). A comparison of asymptotic and rational approximation to the built-in second order exponential integral function E 2 (E/KT) for E/KT < 600 is also presented. The results are verified by deconvolution of test synthetic glow curves with F.O.M up to 0.0005%, experimental glow curve for CTD with F.O.M of 0.9781%, and in the case of GLOWCANIN project glow curves, the F.O.M is comparable to the least values achieved by inter-comparison participants. • Development of easy to use CGCD tool based on Microsoft Excel®. • Deconvolution of TL glow curves using individual or combination of various models. • An inter-comparison of asymptotic and rational approximations in TL expressions. • Accuracy of fitted results depends upon the selection of approximation. • Use of GLOWCANIN project and synthetic glow curves for validation and analysis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09698043
- Volume :
- 179
- Database :
- Academic Search Index
- Journal :
- Applied Radiation & Isotopes
- Publication Type :
- Academic Journal
- Accession number :
- 153826884
- Full Text :
- https://doi.org/10.1016/j.apradiso.2021.110014