Back to Search Start Over

A Comprehensive Analysis on the Healthy and Faulty Two Types VR-Resolvers With Eccentricity and Inter-Turn Faults.

Authors :
Naderi, Peyman
Ghandehari, Reza
Heidary, Malihe
Source :
IEEE Transactions on Energy Conversion. Dec2021, Vol. 36 Issue 4, p3502-3511. 10p.
Publication Year :
2021

Abstract

This paper presents a new Magnetic Equivalent Circuit (MEC) to model the Variable Reluctance Resolver (VR-Resolver) and study the effect of different windings configurations on its performance. Therefore, VR-Resolver with non-overlapping (constant turn) and overlapping (variable turn) windings are modeled to investigate their effect on the accuracy of obtained results. The proposed method gives the possibility to model both healthy and faulty conditions by a unique model to analyze faults effects on the position error. For this purpose, the inter-turn fault is considered on the excitation winding, and both dynamic and static eccentric rotors (DE and SE) are studied. It is shown that the variable turn VR-Resolver has more accuracy and lower sensitivity to eccentricity fault, while the constant turn type is less sensitive to inter-turn fault. However, the latter may be preferred in some applications thanks to its simpler windings and lower manufacturing costs. Finally, the MEC results are proved by Finite Element Method (FEM) and experimental results. Generally, the model flexibility and shorter processing time can be considered as the proposed MEC advantages over FEM. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08858969
Volume :
36
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Energy Conversion
Publication Type :
Academic Journal
Accession number :
153926652
Full Text :
https://doi.org/10.1109/TEC.2021.3079725