Back to Search
Start Over
The IRF2/CENP-N/AKT signaling axis promotes proliferation, cell cycling and apoptosis resistance in nasopharyngeal carcinoma cells by increasing aerobic glycolysis.
- Source :
-
Journal of Experimental & Clinical Cancer Research (17569966) . 12/10/2021, Vol. 40 Issue 1, p1-19. 19p. - Publication Year :
- 2021
-
Abstract
- Background: Centromere protein N (CENP-N) has been reported to be highly expressed in malignancies, but its role and mechanism in nasopharyngeal carcinoma (NPC) are unknown. Methods: Abnormal CENP-N expression from NPC microarrays of GEO database was analyzed. CENP-N expression level was confirmed in NPC tissues and cell lines. Stable CENP-N knockdown and overexpression NPC cell lines were established, and transcriptome sequencing after CENP-N knockdown was performed. In vitro and in vivo experiments were performed to test the impact of CENP-N knockdown in NPC cells. ChIP and dual luciferase reporter assays were used to verify the combination of IRF2 and CENP-N. Western blot analysis, cellular immunofluorescence, immunoprecipitation and GST pulldown assays were used to verify the combination of CENP-N and AKT. Results: CENP-N was confirmed to be aberrantly highly expressed in NPC tissues and cell lines and to be associated with high 18F-FDG uptake in cancer nests and poor patient prognosis. Transcriptome sequencing after CENP-N knockdown revealed that genes with altered expression were enriched in pathways related to glucose metabolism, cell cycle regulation. CENP-N knockdown inhibited glucose metabolism, cell proliferation, cell cycling and promoted apoptosis. IRF2 is a transcription factor for CENP-N and directly promotes CENP-N expression in NPC cells. CENP-N affects the glucose metabolism, proliferation, cell cycling and apoptosis of NPC cells in vitro and in vivo through the AKT pathway. CENP-N formed a complex with AKT in NPC cells. Both an AKT inhibitor (MK-2206) and a LDHA inhibitor (GSK2837808A) blocked the effect of CENP-N overexpression on NPC cells by promoting aerobic glycolysis, proliferation, cell cycling and apoptosis resistance. Conclusions: The IRF2/CENP-N/AKT axis promotes malignant biological behaviors in NPC cells by increasing aerobic glycolysis, and the IRF2/CENP-N/AKT signaling axis is expected to be a new target for NPC therapy. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 17569966
- Volume :
- 40
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of Experimental & Clinical Cancer Research (17569966)
- Publication Type :
- Academic Journal
- Accession number :
- 154086597
- Full Text :
- https://doi.org/10.1186/s13046-021-02191-3