Back to Search Start Over

Nonlinear Neumann boundary value problem for semilinear heat equations with critical power nonlinearities.

Authors :
Hayashi, Nakao
Kaikina, Elena I.
Naumkin, Pavel I.
Ogawa, Takayoshi
Source :
Asymptotic Analysis. Dec2021, p1-35. 35p.
Publication Year :
2021

Abstract

We study the nonlinear Neumann boundary value problem for semilinear heat equation ∂ t u − Δ u = λ | u | p , t > 0 , x ∈ R + n , u ( 0 , x ) = ε u 0 ( x ) , x ∈ R + n , − ∂ x u ( t , x ′ , 0 ) = γ | u | q ( t , x ′ , 0 ) , t > 0 , x ′ ∈ R n − 1 where p = 1 + 2 n , q = 1 + 1 n and ε > 0 is small enough. We investigate the life span of solutions for λ , γ > 0. Also we study the global in time existence and large time asymptotic behavior of solutions in the case of λ , γ < 0 and ∫ R + n u 0 ( x ) d x > 0. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09217134
Database :
Academic Search Index
Journal :
Asymptotic Analysis
Publication Type :
Academic Journal
Accession number :
154118737
Full Text :
https://doi.org/10.3233/asy-211751