Back to Search Start Over

Normal forms and near-axis expansions for Beltrami magnetic fields.

Authors :
Duignan, Nathan
Meiss, James D.
Source :
Physics of Plasmas. Dec2021, Vol. 48 Issue 12, p1-19. 19p.
Publication Year :
2021

Abstract

A formal series transformation to Birkhoff–Gustavson normal form is obtained for toroidal magnetic field configurations in the neighborhood of a magnetic axis. Bishop's rotation minimizing coordinates are used to obtain a local orthogonal frame near the axis in which the metric is diagonal, even if the curvature has zeros. We treat the cases of vacuum and force-free (Beltrami) fields in a unified way, noting that the vector potential is essentially the Poincaré–Liouville one-form of Hamiltonian dynamics, and the resulting magnetic field corresponds to the canonical two-form of a non-autonomous one-degree-of-freedom system. Canonical coordinates are obtained and Floquet theory is used to transform to a frame in which the lowest order Hamiltonian is autonomous. The resulting magnetic axis can be elliptic or hyperbolic, and resonant elliptic cases are treated. The resulting expansion for the field is shown to be well-defined to all orders, and is explicitly computed to degree four. An example is given for an axis with constant torsion near a 1:3 resonance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
48
Issue :
12
Database :
Academic Search Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
154430103
Full Text :
https://doi.org/10.1063/5.0066000