Back to Search Start Over

Interlayered modified hydroxides for removal of graphene oxide from water: Mechanism and secondary applications.

Authors :
Shahzad, Ajmal
Ali, Jawad
Wajid Ullah, Muhammad
Aregay, Gebremedhin G
Ifthikar, Jerosha
Manan, Sehrish
Yang, Guang
Chen, Zhulei
Chen, Zhuqi
Source :
Separation & Purification Technology. Feb2022, Vol. 284, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

[Display omitted] • Fe-HO/(NO 3) captured GO excellently than hydroxides with different anions. • NO 3 – release from the hydroxide galleries resulted in exfoliation of host layers. • Electrostatic interactions were the driving force for removal of GO. • GO removal was significantly affected by pH. • Coagulated end product was further used in secondary applications, i.e., AOPs and adsorption. The extensive use and inevitable release of graphene oxide (GO) to the environment have increased the threat of its exposure to living organisms. This study reports the design of Fe-based hydroxides with different interlayers anions, i.e., Cl−, SO 4 2−, CO 3 2−, and NO 3 − to capture GO from an aqueous medium. Various characterization techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), confirmed the successful synthesis of these different materials. The Fe-hydroxides as Fe-HO/(NO 3) with NO 3 − interlayers anions effectively removed up to 190 mg/g GO and was tolerant to a high concentration of background electrolyte, different anions, and increasing ionic strength. These remarkable features of Fe-HO/(NO 3) originated from the weak bonding abilities of interlayers NO 3 − anions that facilitated simple self-exfoliation of hydroxide nanosheets, and thus promoted the electrostatic interactions between the positively charged layers of hydroxides and negatively charged GO particles. The coagulated end product (Fe-HO/(NO 3)@GO can be further used in advanced oxidation processes (AOPs) as catalyst or adsorbent for the treatment of different pollutants. We believe that this work not only explains the positive aspect of regulating anions in the hydroxides layers but also provides a direction to develop new materials for environmental remediation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13835866
Volume :
284
Database :
Academic Search Index
Journal :
Separation & Purification Technology
Publication Type :
Academic Journal
Accession number :
154452084
Full Text :
https://doi.org/10.1016/j.seppur.2021.120305