Back to Search Start Over

PScL-HDeep: image-based prediction of protein subcellular location in human tissue using ensemble learning of handcrafted and deep learned features with two-layer feature selection.

Authors :
Ullah, Matee
Han, Ke
Hadi, Fazal
Xu, Jian
Song, Jiangning
Yu, Dong-Jun
Source :
Briefings in Bioinformatics. Nov2021, Vol. 22 Issue 6, p1-17. 17p.
Publication Year :
2021

Abstract

Protein subcellular localization plays a crucial role in characterizing the function of proteins and understanding various cellular processes. Therefore, accurate identification of protein subcellular location is an important yet challenging task. Numerous computational methods have been proposed to predict the subcellular location of proteins. However, most existing methods have limited capability in terms of the overall accuracy, time consumption and generalization power. To address these problems, in this study, we developed a novel computational approach based on human protein atlas (HPA) data, referred to as PScL-HDeep, for accurate and efficient image-based prediction of protein subcellular location in human tissues. We extracted different handcrafted and deep learned (by employing pretrained deep learning model) features from different viewpoints of the image. The step-wise discriminant analysis (SDA) algorithm was applied to generate the optimal feature set from each original raw feature set. To further obtain a more informative feature subset, support vector machine–based recursive feature elimination with correlation bias reduction (SVM-RFE + CBR) feature selection algorithm was applied to the integrated feature set. Finally, the classification models, namely support vector machine with radial basis function (SVM-RBF) and support vector machine with linear kernel (SVM-LNR), were learned on the final selected feature set. To evaluate the performance of the proposed method, a new gold standard benchmark training dataset was constructed from the HPA databank. PScL-HDeep achieved the maximum performance on 10-fold cross validation test on this dataset and showed a better efficacy over existing predictors. Furthermore, we also illustrated the generalization ability of the proposed method by conducting a stringent independent validation test. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
22
Issue :
6
Database :
Academic Search Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
154512649
Full Text :
https://doi.org/10.1093/bib/bbab278