Back to Search Start Over

A bacteria-triggered wearable colorimetric band-aid for real-time monitoring and treating of wound healing.

Authors :
Dong, Mengna
Sun, Xinyu
Li, Lihua
He, Kunyi
Wang, Jiao
Zhang, Hui
Wang, Li
Source :
Journal of Colloid & Interface Science. Mar2022, Vol. 610, p913-922. 10p.
Publication Year :
2022

Abstract

[Display omitted] Early diagnosis of bacterial infection and tracking of treatment effect are of great importance for developing a "sense-and-treat" integrated system. Herein, we developed a bacteria-triggered, portable, wearable and colorimetric film-based band-aid (FBA) for closed-loop monitoring and light-controlled therapy of wound infection. FBA with high photothermal conversion efficiency of 52.56% was prepared by wrapping Bi 2 S 3 nanoflowers (BS NFs) loaded with rhodium nanoparticles (Rh NPs) and bromothymol blue (BTB) into LB agar film, integrating bacteria-triggered color change, photothermal/photodynamic therapy (PTT/PDT) synergistic bactericidal therapy and agar-based band aid in one intelligent system. Initially, FBA effectively simulates the pH sensing mechanism, and monitors the occurrence of bacterial infections within 5 min through color changes of Staphylococcus aureus (S. aureus) from blue to yellow and Escherichia coli (E. coli) from yellow to blue. Additionally, the short-term and controlled antibacterial strategy of "one light dual-mode responses" (photothermal and photodynamic responses) was implemented with the introduce of near-infrared (NIR). Ultimately, the effectiveness of FBA was fully validated in the monitoring and treating of S. aureus -infected mouse wounds. Notably, the designed FBA decisively abandoned off-target side effects maximizing the treatment effect and nakedly tracking therapeutic situation in real time, contributing an effective antibacterial alternative strategy for reducing the use of antibiotics. To the best of our knowledge, such integrated system is still unreported on film-fixed model. In view of the advantages of the low cost and convenience of the simple device, the integrated design is expected to provide a solution for the development of a closed-loop biomedical system combining diagnosis and treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
610
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
154593694
Full Text :
https://doi.org/10.1016/j.jcis.2021.11.146