Back to Search Start Over

A high-stable soybean-oil-based epoxy acrylate emulsion stabilized by silanized nanocrystalline cellulose as a sustainable paper coating for enhanced water vapor barrier.

Authors :
Tian, Xuwang
Wu, Min
Wang, Zhiwei
Zhang, Jian
Lu, Peng
Source :
Journal of Colloid & Interface Science. Mar2022, Vol. 610, p1043-1056. 14p.
Publication Year :
2022

Abstract

[Display omitted] Soybean-oil-based polymer is a promising bio-based water barrier coating on paper packaging but the application is challenged due to its poor water dispersibility. In this present study, 3-aminopropyltriethoxysilane (APTES) modified nanocrystalline cellulose (NCC) was used to implement a stable dispersion of acrylated epoxidized soybean oil (AESO) in water and thus synergistically improved the water vapor barrier properties after coating on paper. APTES-NCC was successfully prepared, and displayed a better interface compatibility with AESO through the Michael addition reaction. Compared with NCC, APTES-NCC displayed an improved hydrophobicity and wettability with AESO, with an increase of contact angle from 38.0° to 76.4°, and a decrease of interfacial tension from 91.5 ± 3.5 mN/m to 82.9 ± 1.8 mN/m. As an emulsifier, APTES-NCC can be more effectively adsorbed on the oil–water interface to form a more stable emulsion than NCC, with a decrease of AESO droplets size from 4.8 µm to 3.1 µm, and a remarkable improvement in static and centrifugal stability. In rheological measurement, the APTES-NCC/AESO emulsion showed a wider linear viscoelastic region (3.4%), better viscoelasticity and thermal curing properties than that of NCC/AESO emulsion, which further explained that the stability of APTES-NCC/AESO emulsion were improved. Therefore, APTES-NCC/AESO emulsion as a coating on paper cured into a continuous barrier film can effectively improve the water vapor barrier properties of paper, and the water vapor transmission rate (WVTR) of paper can be reduced from 1392.8 g/m2•24 h (NCC/AESO emulsion-coated) to 1286.3 g/m2 24 h (APTES-NCC/AESO emulsion-coated), both are significantly lower than that of base paper (1926.7 g/m2•24 h). CLSM testing showed that APTES-NCC could interact effectively with AESO to forming a tight barrier on paper surface and at the same time, sealing the pores inside the paper to resist water vapor penetration. The high-stable AESO emulsion prepared by APTES-NCC is expected to facilitate the utilization of NCC and AESO as a value-added material in making sustainable barrier packaging. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
610
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
154593695
Full Text :
https://doi.org/10.1016/j.jcis.2021.11.149