Back to Search
Start Over
Deep Learning and Improved HMM Training Algorithm and Its Analysis in Facial Expression Recognition of Sports Athletes.
- Source :
-
Computational Intelligence & Neuroscience . 1/18/2022, p1-12. 12p. - Publication Year :
- 2022
-
Abstract
- Facial expressions are an auxiliary embodiment of information conveyed in the communication between people. Facial expressions can not only convey the semantic information that people want to express but also convey the emotional state of the speaker at the same time. But for sports athletes in training and competitions, it is usually not convenient to communicate directly. This paper is based on deep learning and an improved HMM training algorithm to study the facial expression recognition of sports athletes. It proposes the construction of deep learning of multilayer neural network, and the rank algorithm is introduced to carry out face recognition experiments with traditional HMM and class-specific HMM methods. The experimental results show that, with the increase of rank value, the class-specific recognition rate is up to 90%, the detection rate is 98% and the time-consuming is 2.5 min, which is better than HMM overall. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16875265
- Database :
- Academic Search Index
- Journal :
- Computational Intelligence & Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 154738094
- Full Text :
- https://doi.org/10.1155/2022/1027735