Back to Search
Start Over
Anomalous Thermal Characteristics of Poly(ionic liquids) Derived from 1-Butyl-2,3-dimethyl-4-vinylimidazolium Salts.
- Source :
-
Polymers (20734360) . Jan2022, Vol. 14 Issue 2, p254-254. 1p. - Publication Year :
- 2022
-
Abstract
- The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. The methyl substituent at the 2-position also served to expose the importance of H-bonding for the attractive potential between imidazolium moiety and anions in polymers without a methyl group at the 2-position. The thermal characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts and corresponding poly(1-ethyl-3-methyl-4-vinylimidazolium) salts were evaluated. While the mid-point glass transition temperatures, Tg-mid, for 1-ethyl-3-methyl-4-vinylimidazolium polymers with CF3SO3ā, (CF3SO2)2Nā and PF6ā counterions, were 153 °C, 88 °C and 200 °C, respectively, the Tg-mid values for 1-butyl-2,3-dimethyl-4vinylimidazolium polymers with corresponding counter-ions were tightly clustered at 98 °C, 99 °C and 84 °C, respectively. This dramatically reduced influence of the anion type on the glass transition temperature was attributed to the increased distance between the center of the anions and cations in the 1-butyl-2,3-dimethyl-4-vinylimidazolium polymer set, and minimal H-bonding interactions between the respective anions and the 1-butyl-2,3-dimethyl-4-vinylimidazolium moiety. It is believed that this is the first observation of substantial independence of the glass transition of an ionic polymer on the nature of its counterion. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 14
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Polymers (20734360)
- Publication Type :
- Academic Journal
- Accession number :
- 154883357
- Full Text :
- https://doi.org/10.3390/polym14020254