Back to Search Start Over

JAB1 deletion in oligodendrocytes causes senescence-induced inflammation and neurodegeneration in mice.

Authors :
Rivellini, Cristina
Porrello, Emanuela
Dina, Giorgia
Mrakic-Sposta, Simona
Vezzoli, Alessandra
Bacigaluppi, Marco
Gullotta, Giorgia Serena
Chaabane, Linda
Leocani, Letizia
Marenna, Silvia
Colombo, Emanuela
Farina, Cinthia
Newcombe, Jia
Nave, Klaus-Armin
Pardi, Ruggero
Quattrini, Angelo
Previtali, Stefano C.
Source :
Journal of Clinical Investigation. Feb2022, Vol. 132 Issue 3, p1-18. 18p.
Publication Year :
2022

Abstract

Oligodendrocytes are the primary target of demyelinating disorders, and progressive neurodegenerative changes may evolve in the CNS. DNA damage and oxidative stress are considered key pathogenic events, but the underlying molecular mechanisms remain unclear. Moreover, animal models do not fully recapitulate human diseases, complicating the path to effective treatments. Here we report that mice with cell-autonomous deletion of the nuclear COP9 signalosome component CSN5 (JAB1) in oligodendrocytes develop DNA damage and defective DNA repair in myelinating glial cells. Interestingly, oligodendrocytes lacking JAB1 expression underwent a senescence-like phenotype that fostered chronic inflammation and oxidative stress. These mutants developed progressive CNS demyelination, microglia inflammation, and neurodegeneration, with severe motor deficits and premature death. Notably, blocking microglia inflammation did not prevent neurodegeneration, whereas the deletion of p21CIP1 but not p16INK4a pathway ameliorated the disease. We suggest that senescence is key to sustaining neurodegeneration in demyelinating disorders and may be considered a potential therapeutic target. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219738
Volume :
132
Issue :
3
Database :
Academic Search Index
Journal :
Journal of Clinical Investigation
Publication Type :
Academic Journal
Accession number :
155011119
Full Text :
https://doi.org/10.1172/JCI145071