Back to Search
Start Over
Surrogate Hessian accelerated structural optimization for stochastic electronic structure theories.
- Source :
-
Journal of Chemical Physics . 2/7/2022, Vol. 156 Issue 5, p1-15. 15p. - Publication Year :
- 2022
-
Abstract
- We present an efficient energy-based method for structural optimization with stochastic electronic structure theories, such as diffusion quantum Monte Carlo (DMC). This method is based on robust line-search energy minimization in reduced parameter space, exploiting approximate but accurate Hessian information from a surrogate theory, such as density functional theory. The surrogate theory is also used to characterize the potential energy surface, allowing for simple but reliable ways to maximize statistical efficiency while retaining controllable accuracy. We demonstrate the method by finding the minimum DMC energy structures of the selected flake-like aromatic molecules, such as benzene, coronene, and ovalene, represented by 2, 6, and 19 structural parameters, respectively. In each case, the energy minimum is found within two parallel line-search iterations. The method is near-optimal for a line-search technique and suitable for a broad range of applications. It is easily generalized to any electronic structure method where forces and stresses are still under active development and implementation, such as diffusion Monte Carlo, auxiliary-field Monte Carlo, and stochastic configuration interaction, as well as deterministic approaches such as the random-phase approximation. Accurate and efficient means of geometry optimization could shed light on a broad class of materials and molecules, showing high sensitivity of induced properties to structural variables. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 156
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 155124812
- Full Text :
- https://doi.org/10.1063/5.0079046