Back to Search Start Over

Fortilin interacts with TGF-β1 and prevents TGF-β receptor activation.

Authors :
Pinkaew, Decha
Martinez-Hackert, Erik
Jia, Wei
King, Matthew D.
Miao, Fei
Enger, Nicole R.
Silakit, Runglawan
Ramana, Kota
Chen, Shi-You
Fujise, Ken
Source :
Communications Biology. 2/23/2022, Vol. 5 Issue 1, p1-13. 13p.
Publication Year :
2022

Abstract

Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and prevents it from activating the TGF-β1 signaling pathway. In a standard immunoprecipitation-western blot assay, fortilin co-immunoprecipitates TGF-β1 and its isoforms. The modified ELISA assay shows that TGF-β1 remains complexed with fortilin in human serum. Both bio-layer interferometry and surface plasmon resonance (SPR) reveal that fortilin directly bind TGF-β1. The SPR analysis also reveals that fortilin and the TGF-β receptor II (TGFβRII) compete for TGF-β1. Both luciferase and secreted alkaline phosphatase reporter assays show that fortilin prevents TGF-β1 from activating Smad3 binding to Smad-binding element. Fortilin inhibits the phosphorylation of Smad3 in both quantitative western blot assays and ELISA. Finally, fortilin inhibits TGFβ-1-induced differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells. A computer-assisted virtual docking reveals that fortilin occupies the pocket of TGF-β1 that is normally occupied by TGFβRII and that TGF-β1 can bind either fortilin or TGFβRII at any given time. These data support the role of extracellular fortilin as a negative regulator of the TGF-β1 signaling pathway. Fortilin prevents the activation of the TGF-β1 receptor by occupying the pocket of TGF-β1 and competing with TGF-βRII to bind with TGF-β1. This inhibits Smad3 phosphorylation and the differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
5
Issue :
1
Database :
Academic Search Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
155397360
Full Text :
https://doi.org/10.1038/s42003-022-03112-6