Back to Search
Start Over
The Bergman kernel and projection on the Fock–Bargmann–Hartogs domain.
- Source :
-
Complex Variables & Elliptic Equations . Jan2022, Vol. 67 Issue 1, p34-48. 15p. - Publication Year :
- 2022
-
Abstract
- Let D n , m = { (z , w) ∈ C n × C m : | w | 2 < e − μ | z | 2 } be the Fock–Bargmann–Hartogs domain, where μ > 0. For any fixed positive integer m, we prove that there exists a unique positive integer n 0 such that D n , m is not a Lu Qi-Keng domain if and only if n ≥ n 0 , which verifies a conjecture posed by Yamamori. Meanwhile, we show that the Bergman projection is bounded on L p (D n , m) if and only if p = 2. We also obtain the optimal rate of growth for holomorphic functions in L p (D n , m). [ABSTRACT FROM AUTHOR]
- Subjects :
- *INTEGERS
Subjects
Details
- Language :
- English
- ISSN :
- 17476933
- Volume :
- 67
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Complex Variables & Elliptic Equations
- Publication Type :
- Academic Journal
- Accession number :
- 155402810
- Full Text :
- https://doi.org/10.1080/17476933.2020.1816982