Back to Search Start Over

Preparation, characterization, and in vitro release kinetics of doxorubicin-loaded magnetosomes.

Authors :
Zhang, Shuang
Fan, Xinxin
Zhang, Guojing
Wang, Weidong
Yan, Lei
Source :
Journal of Biomaterials Applications. Mar2022, Vol. 36 Issue 8, p1469-1483. 15p.
Publication Year :
2022

Abstract

The doxorubicin (DOX) was successfully coupled to the magnetosomes from Acidithiobacillus ferrooxidans (At. ferrooxidans) by genipin bridging. The parameters (magnetosome concentration, DOX concentration, genipin concentration-, and cross-link time) expected for temperature significantly influenced the coupling rate. Bacterial magnetosome-doxorubicin complexes (BMDCs) were characterized by transmission electron microscope (TEM), particle size analyzer and Fourier transform infrared spectroscopy. Results indicated that BMDCs exhibited a mean particle size of 83.98 mm and displayed a negative charge. The chemical reaction occurring between CO and NH group and the physical adsorption predominated by electrostatic interaction were found to involve in coupling. BMDCs can release 40% of DOX in simulated gastrointestinal conditions within 38 h. Kinetic models including Higuchi, Korsmeyer–Peppas, Zero order, First order, Hixon-Crowell, Baker-Lonsdale, and Weibull and Gompertz were utilized to explore the release mechanism of DOX from BMDCs. All models were found to fit well (r2 ≥ 0.8144) with the release data and the Gompertz was the best fit model (r2 = 0.9742), implying that the complex mechanisms involving Fickian and Gompertz diffusion contributed to the release. These findings suggested that magnetosomes from At. ferrooxidans have great potential applications in biomedical and clinical fields as the carrier of target drug delivery systems in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08853282
Volume :
36
Issue :
8
Database :
Academic Search Index
Journal :
Journal of Biomaterials Applications
Publication Type :
Academic Journal
Accession number :
155438156
Full Text :
https://doi.org/10.1177/08853282211060544