Back to Search Start Over

Tuning the (Chir)Optical Properties and Squeezing out the Inherent Chirality in Polyphenylene‐Locked Helical Carbon Nanorings.

Authors :
Wang, Jinyi
Shi, Hong
Wang, Shengda
Zhang, Xinyu
Fang, Pengwei
Zhou, Yu
Zhuang, Gui‐Lin
Shao, Xiang
Du, Pingwu
Source :
Chemistry - A European Journal. 3/1/2022, Vol. 28 Issue 13, p1-8. 8p.
Publication Year :
2022

Abstract

Distorting linear polyaromatic hydrocarbons (PAHs) out of planarity affects their physical properties and breaks their symmetry to induce inherent chirality. However, the chirality cannot be achieved in large distorted PAHs‐based macrocycles due to a low racemization barrier for isomerization. Herein, we report the precise synthesis and tuning size‐dependent (chir)optical properties of a new class of chiral PAHs‐containing conjugated macrocycles (cyclo[n]paraphenylene‐2,6‐anthrylene, [n]CPPAn2,6; n=6–8). Their inherent chiralities were squeezed out in small anthrylene‐based macrocycles. Efficient resolutions for chiral enantiomers with (P)/(M)‐helicity of small [6‐7]CPPAns were achieved by HPLC. Interestingly, these macrocycles showed enriched size‐dependent physical, chiral, and (chir)optical properties. Theoretical calculations indicate that these macrocycles have high strain energy (Estrain=60.8 to 73.4 kcal/mol) and very small Egap (∼3.0 eV). Notably, these enantiomers showed strong chiroptical properties and dissymmetry factors (|gabs| and |glum|∼0.01 for an enantiomer of [6]CPPAn2,6), which can give them potential applications in optically active materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09476539
Volume :
28
Issue :
13
Database :
Academic Search Index
Journal :
Chemistry - A European Journal
Publication Type :
Academic Journal
Accession number :
155483841
Full Text :
https://doi.org/10.1002/chem.202103828