Back to Search Start Over

High-Density Horizontal Stacking of Chondrocytes via the Synergy of Biocompatible Magnetic Gelatin Nanocarriers and Internal Magnetic Navigation for Enhancing Cartilage Repair.

Authors :
Yang, Shan-Wei
Chen, Yong-Ji
Chen, Ching-Jung
Liu, Jen-Tsai
Yang, Chin-Yi
Tsai, Jen-Hao
Lu, Huai-En
Chen, San-Yuan
Chang, Shwu-Jen
Source :
Polymers (20734360). Feb2022, Vol. 14 Issue 4, p809-809. 1p.
Publication Year :
2022

Abstract

Osteoarthritis (OA) is a globally occurring articular cartilage degeneration disease that adversely affects both the physical and mental well-being of the patient, including limited mobility. One major pathological characteristic of OA is primarily related to articular cartilage defects resulting from abrasion and catabolic and proinflammatory mediators in OA joints. Although cell therapy has hitherto been regarded as a promising treatment for OA, the therapeutic effects did not meet expectations due to the outflow of implanted cells. Here, we aimed to explore the repair effect of magnetized chondrocytes using magnetic amphiphilic-gelatin nanocarrier (MAGNC) to enhance cellular anchored efficiency and cellular magnetic guidance (MG) toward the superficial zone of damaged cartilage. The results of in vitro experiments showed that magnetized chondrocytes could be rapidly guided along the magnetic force line to form cellular amassment. Furthermore, the Arg-Gly-Asp (RGD) motif of gelatin in MAGNC could integrate the interaction among cells to form cellular stacking. In addition, MAGNCs upregulated the gene expression of collagen II (Col II), aggrecan, and downregulated that of collagen I (Col I) to reduce cell dedifferentiation. In animal models, the magnetized chondrocytes can be guided into the superficial zone with the interaction between the internal magnetic field and MAGNC to form cellular stacking. In vivo results showed that the intensity of N-sulfated-glycosaminoglycans (sGAG) and Col II in the group of magnetized cells with magnetic guiding was higher than that in the other groups. Furthermore, smooth closure of OA cartilage defects was observed in the superficial zone after 8 weeks of implantation. The study revealed the significant potential of MAGNC in promoting the high-density stacking of chondrocytes into the cartilage surface and retaining the biological functions of implanted chondrocytes for OA cartilage repair. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
14
Issue :
4
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
155529401
Full Text :
https://doi.org/10.3390/polym14040809