Back to Search Start Over

Work function of van der Waals topological semimetals: Experiment and theory.

Authors :
Biswal, Bubunu
Mishra, Shashi B.
Yadav, Renu
Poudyal, Saroj
Rajarapu, Ramesh
Barman, Prahalad Kanti
Pandurang, Khade Ramdas
Mandal, Manasi
Singh, Ravi Prakash
Nanda, B. R. K.
Misra, Abhishek
Source :
Applied Physics Letters. 2/28/2022, Vol. 120 Issue 9, p1-6. 6p.
Publication Year :
2022

Abstract

The work function (WF) of a material governs the back and forth movement of the charge carriers across the hetero-interface of two materials. Therefore, for optimum device performance, precise knowledge of the WF is prerequisite while employing any new material in electronic devices. In this work, using metal oxide semiconductor capacitors, we experimentally determine the WF of layered van der Waals topological semimetals (TSMs) 1T′-MoTe2, 1T-PtSe2, and Td-WTe2 as 4.87, 5.05, and 4.82 eV, respectively. The experimentally obtained results are corroborated with density functional theory calculations. Furthermore, by analyzing the vertical current transport across the metal oxide semiconductor stack using Fowler–Nordheim tunneling formalism, the barrier height between the TSMs and the gate insulator (SiO2) is experimentally calculated. The obtained barrier heights are also following the same trend as that of WF for three TSMs. These TSMs host unique topological nontrivial phases potentially useful for the development of emerging quantum technologies, and therefore, the findings of this study are significant for designing the future quantum devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
120
Issue :
9
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
155580030
Full Text :
https://doi.org/10.1063/5.0079032