Back to Search Start Over

Sharp weak type estimates for a family of Zygmund bases.

Authors :
Hagelstein, Paul
Stokolos, Alex
Source :
Proceedings of the American Mathematical Society. May2022, Vol. 150 Issue 5, p2049-2057. 9p.
Publication Year :
2022

Abstract

Let \mathcal {B} be the collection of rectangular parallelepipeds in \mathbb {R}^3 whose sides are parallel to the coordinate axes and such that \mathcal {B} consists of parallelepipeds with side lengths of the form s, 2^j s, t, where s, t > 0 and j lies in a nonempty subset S of the integers. In this paper, we prove the following: If S is a finite set, then the associated geometric maximal operator M_\mathcal {B} satisfies the weak type estimate \begin{equation*} \left |\left \{x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right \}\right | \leq C \int _{\mathbb {R}^3} \frac {|f|}{\alpha }\left (1 + \log ^+ \frac {|f|}{\alpha }\right)\; \end{equation*} but does not satisfy an estimate of the form \begin{equation*} \left |\left \{x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right \}\right | \leq C \int _{\mathbb {R}^3} \phi \left (\frac {|f|}{\alpha }\right) \end{equation*} for any convex increasing function \phi : \mathbb [0, \infty) \rightarrow [0, \infty) satisfying the condition \begin{equation*} \lim _{x \rightarrow \infty }\frac {\phi (x)}{x (\log (1 + x))} = 0. \end{equation*} On the other hand, if S is an infinite set, then the associated geometric maximal operator M_\mathcal {B} satisfies the weak type estimate \begin{equation*} \left |\left \{x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right \}\right | \leq C \int _{\mathbb {R}^3} \frac {|f|}{\alpha } \left (1 + \log ^+ \frac {|f|}{\alpha }\right)^{2} \end{equation*} but does not satisfy an estimate of the form \begin{equation*} \left |\left \{x \in \mathbb {R}^3 : M_{\mathcal {B}}f(x) > \alpha \right \}\right | \leq C \int _{\mathbb {R}^3} \phi \left (\frac {|f|}{\alpha }\right) \end{equation*} for any convex increasing function \phi : \mathbb [0, \infty) \rightarrow [0, \infty) satisfying the condition \begin{equation*} \lim _{x \rightarrow \infty }\frac {\phi (x)}{x (\log (1 + x))^2} = 0. \end{equation*} [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*CONVEX functions
*INTEGERS

Details

Language :
English
ISSN :
00029939
Volume :
150
Issue :
5
Database :
Academic Search Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
155683847
Full Text :
https://doi.org/10.1090/proc/15808