Back to Search Start Over

Sensitive and Selective Detection of Clenbuterol in Meat Samples by a Graphene Quantum Dot Fluorescent Probe Based on Cationic-Etherified Starch.

Authors :
Xie, Huanyu
Chen, Cairou
Lie, Jiansen
You, Ruiyun
Qian, Wei
Lin, Shan
Lu, Yudong
Source :
Nanomaterials (2079-4991). Feb2022, Vol. 12 Issue 4, p691. 1p.
Publication Year :
2022

Abstract

The use of clenbuterol (CLB) in large quantities in feedstuffs worldwide is illegal and potentially dangerous for human health. In this study, we directly prepared nitrogen-doped graphene quantum dots (N-GQDs) by a one-step method using cationic-etherified starch as raw material without pollution, which has the advantages of simple, green, and rapid synthesis of N-GQDs and high doping efficiency of nitrogen elements, compared with the traditional nitrogen doping method of reacting nitrogen source raw material with quantum dots. The N-GQDs synthesized by cationic etherification starch with different substitution degrees (DSs) exhibit good blue-green photoluminescence, good fluorescence stability, and water solubility. By comparing the fluorescence emission intensity of the two methods, the N-GQDs prepared by this method have higher fluorescence emission intensity and good fluorescence stability. Based on the static quenching mechanism between CLB and N-GQDs, a fluorescent probe was designed to detect CLB, which exhibited a wide linear range in the concentration range of 5 × 10−10~5 × 10−7 M (R2 = 0.9879) with a limit of detection (LOD) of 2.083 × 10−13 M. More excitingly, the N-GQDs fluorescent probe exhibited a satisfactory high selectivity. Meanwhile, it can be used for the detection of CLB in chicken and beef, and good recoveries were obtained. In summary, the strategic approach in this paper has potential applications in the detection of risky substances in the field of food safety. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
4
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
155711167
Full Text :
https://doi.org/10.3390/nano12040691