Back to Search Start Over

Current water quality guidelines across North America and Europe do not protect lakes from salinization.

Authors :
Hintz, William D.
Arnott, Shelley E.
Symons, Celia C.
Greco, Danielle A.
McClymont, Alexandra
Brentrup, Jennifer A.
Cañedo-Argüelles, Miguel
Derry, Alison M.
Downing, Amy L.
Gray, Derek K.
Melles, Stephanie J.
Relyea, Rick A.
Rusak, James A.
Searle, Catherine L.
Astorg, Louis
Baker, Henry K.
Beisner, Beatrix E.
Cottingham, Kathryn L.
Ersoy, Zeynep
Espinosa, Carmen
Source :
Proceedings of the National Academy of Sciences of the United States of America. 3/1/2022, Vol. 119 Issue 9, p1-10. 49p.
Publication Year :
2022

Abstract

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization— indicated as elevated chloride (Cl2) concentration—will affect lake food webs and if two of the lowest Cl2 thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl2 thresholds established in Canada (120 mg Cl2/L) and the United States (230 mg Cl2/L) and throughout Europe where Cl2 thresholds are generally higher. For instance, at 73% of our study sites, Cl2 concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl2 thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl2 thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
119
Issue :
9
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
155743652
Full Text :
https://doi.org/10.1073/pnas.2115033119