Back to Search Start Over

Effects of Ion-Induced Displacement Damage on GaN/AlN MEMS Resonators.

Authors :
Sui, Wen
Zheng, Xu-Qian
Lin, Ji-Tzuoh
Lee, Jaesung
Davidson, Jim L.
Reed, Robert A.
Schrimpf, Ronald D.
Alphenaar, Bruce W.
Alles, Michael L.
Feng, Philip X.-L.
Source :
IEEE Transactions on Nuclear Science. Mar2022, Vol. 69 Issue 3, p216-224. 9p.
Publication Year :
2022

Abstract

Gallium nitride (GaN) has attracted great attention as a structural material for advanced microelectromechanical systems (MEMS), thanks to its excellent ensemble of electrical and mechanical properties. Here, we report on studying the effects of ion radiation-induced displacement damage on resonant MEMS made of GaN film grown on aluminum nitride (AlN) buffer layer. We design and fabricate GaN/AlN heterostructure doubly-clamped microstring resonators with length $L \,\, =100$ , 200, 300, 400, 500, 600, and 700 $\mu \text{m}$ , and irradiate the devices with 440-keV Ar $^{+}$ ions, to probe the effects of ion radiation-induced displacement damage on the resonance behavior. The ion energy and range have been selected so that the ions would stop within the GaN layer, thus allowing diagnostics to show the effects of damage in the structure. The multimode resonance frequencies of the devices decrease significantly ($\vert \Delta f\vert /f >50$ %) with the increase of fluence beyond 1014 cm−2. According to scanning electron microscopy (SEM) imaging, the irradiated GaN/AlN resonators are visibly deformed at high fluence, where the amount of curvature increases monotonically with the fluence. The deformation of the structures can be ascribed to the change in both Young’s modulus and built-in stress resulting from ion radiation-induced displacement damage. The results extend the understanding of radiation-induced damage mechanisms in resonant MEMS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189499
Volume :
69
Issue :
3
Database :
Academic Search Index
Journal :
IEEE Transactions on Nuclear Science
Publication Type :
Academic Journal
Accession number :
155866812
Full Text :
https://doi.org/10.1109/TNS.2022.3143550