Back to Search Start Over

Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90+ MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis.

Authors :
Li, Yuanlong
Tu, Qingqiang
Xie, Dongmei
Chen, Shurui
Gao, Kai
Xu, Xiaochun
Zhang, Ziji
Mei, Xifan
Source :
Journal of Nanobiotechnology. 3/19/2022, Vol. 20 Issue 1, p1-20. 20p.
Publication Year :
2022

Abstract

Background: Osteoarthritis (OA) is a highly prevalent human degenerative joint disorder that has long plagued patients. Glucocorticoid injection into the intra-articular (IA) cavity provides potential short-term analgesia and anti-inflammatory effects, but long-term IA injections cause loss of cartilage. Synovial mesenchymal stem cells (MSCs) reportedly promote cartilage proliferation and increase cartilage content. Methods: CD90+ MCS-derived micro-vesicle (CD90@MV)-coated nanoparticle (CD90@NP) was developed. CD90+ MCSs were extracted from human synovial tissue. Cytochalasin B (CB) relaxed the interaction between the cytoskeleton and the cell membranes of the CD90+ MCSs, stimulating CD90@MV secretion. Poly (lactic-co-glycolic acid) (PLGA) nanoparticle was coated with CD90@MV, and a model glucocorticoid, triamcinolone acetonide (TA), was encapsulated in the CD90@NP (T-CD90@NP). The chondroprotective effect of T-CD90@NP was validated in rabbit and rat OA models. Results: The CD90@MV membrane proteins were similar to that of CD90+ MCSs, indicating that CD90@MV bio-activity was similar to the cartilage proliferation-inducing CD90+ MCSs. CD90@NP binding to injured primary cartilage cells was significantly stronger than to erythrocyte membrane-coated nanoparticles (RNP). In the rabbit OA model, the long-term IA treatment with T-CD90@NP showed significantly enhanced repair of damaged cartilage compared to TA and CD90+ MCS treatments. In the rat OA model, the short-term IA treatment with T-CD90@NP showed effective anti-inflammatory ability similar to that of TA treatment. Moreover, the long-term IA treatment with T-CD90@NP induced cartilage to restart the cell cycle and reduced cartilage apoptosis. T-CD90@NP promoted the regeneration of chondrocytes, reduced apoptosis via the FOXO pathway, and influenced type 2 macrophage polarization to regulate inflammation through IL-10. Conclusion: This study confirmed that T-CD90@NP promoted chondrocyte proliferation and anti-inflammation, improving the effects of a clinical glucocorticoid treatment plan. Highlights: Long-term injection of glucocorticoids in the knee joint cavity promotes loss of cartilage content. CD90-positive stem cell vesicles encapsulated with Triamcinolone acetonide-loaded nanoparticles have good materials. T-CD90@NPs drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. T-CD90@NPs regulate the polarization of type 2 macrophages to resist inflammation. T-CD90@NPs promote chondrocyte regeneration through the FOXO signaling pathway. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14773155
Volume :
20
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
155869871
Full Text :
https://doi.org/10.1186/s12951-022-01367-z