Back to Search Start Over

Acidity and Stability of Brønsted Acid Sites in Green Clinoptilolite Catalysts and Catalytic Performance in the Etherification of Glycerol.

Authors :
Hieu, Do Trung
Kosslick, Hendrik
Riaz, Muhammad
Schulz, Axel
Springer, Armin
Frank, Marcus
Jaeger, Christian
Thu, Nguyen Thi Minh
Son, Le Thanh
Source :
Catalysts (2073-4344). Mar2022, Vol. 12 Issue 3, p253. 24p.
Publication Year :
2022

Abstract

Natural zeolite clinoptilolite CLIN with a framework ratio of Si/Al ≥ 4 containing mainly potassium and calcium ions in its internal channel system was used as a starting material. The acidic HCLIN catalysts were prepared under soft conditions avoiding the use of environmental less-benign mineral acids. The starting material was ion exchanged using a 0.2 M aqueous ammonium nitrate solution at a temperature 80 °C for 2 h. The obtained NH4CLIN was converted into the acid HCLIN catalyst by calcination at 300–600 °C. The obtained samples were characterized by XRD, FTIR, SEM/TEM, AAS, and EDX element mapping. The state of aluminium and silicon was studied by 27Al- and 29SiMAS NMR spectroscopy. The textural properties of the catalysts were investigated by nitrogen adsorption and desorption measurements. The Brønsted acidity of the HCLIN catalysts was studied by temperature-programmed decomposition of the exchanged ammonium ions releasing ammonia as well as 1H MAS NMR, {1H–27Al} Trapdor, and {1H–27Al} Redor experiments. The strongly agglomerated samples were crystalline and thermally stable up to >500 °C. Although a part of the clinoptilolite framework is maintained up to 600 °C, a loss of crystallinity is already observed starting from 450 °C. The specific surface areas of the starting CLIN and ammonium exchanged NH4CLIN are low with ca. 26 m2/g. The pores are nearly blocked by the exchangeable cations located in the zeolite pores. The thermal decomposition of the ammonium ions by calcination at 400 °C causes an opening of the pore entrances and a markable increase in the specific micropore area and micropore volume to ca. 163 m2/g and 0.07 cm3/g, respectively. It decreases with further rising calcination temperature indicating some structural loss. The catalysts show a broad distribution of Brønsted acid sites (BS) ranging from weak to strong sites as indicated the thermal decomposition of exchanged ammonium ions (TPDA). The ammonium ion decomposition leaving BS, i.e., H+ located at Al–O–Si framework bridges, starts at ≥250 °C. A part of the Brønsted sites is lost after calcination specifically at 500 °C. It is related to the formation of penta-coordinated aluminium at the expense of tetrahedral framework aluminium. The Brønsted sites are partially recreated after repeated ammonium ion exchange. The catalytic performance of the acidic HCLIN catalysts was tested in the etherification of glycerol as a green renewable resource with different C1-C4 alcohols. The catalysts are highly active in the etherification of glycerol, especially with alcohols containing the branched, tertiary alkyl groups. Highest activity is observed with the soft activated catalyst HCLIN300 (300 °C, temperature holding time: 1 min). A total of 78% conversion of glycerol to mono and di ether were achieved with tert-butanol at 140 °C after 4 h of reaction. The mono- and di-ether selectivity were 75% and 25%, respectively. The catalyst can be reused. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734344
Volume :
12
Issue :
3
Database :
Academic Search Index
Journal :
Catalysts (2073-4344)
Publication Type :
Academic Journal
Accession number :
155980518
Full Text :
https://doi.org/10.3390/catal12030253