Back to Search Start Over

Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared Thermography: A Review.

Authors :
de Oliveira, Aline Kirsten Vidal
Aghaei, Mohammadreza
Rüther, Ricardo
Source :
Energies (19961073). Mar2022, Vol. 15 Issue 6, p2055-2055. 24p.
Publication Year :
2022

Abstract

In recent years, aerial infrared thermography (aIRT), as a cost-efficient inspection method, has been demonstrated to be a reliable technique for failure detection in photovoltaic (PV) systems. This method aims to quickly perform a comprehensive monitoring of PV power plants, from the commissioning phase through its entire operational lifetime. This paper provides a review of reported methods in the literature for automating different tasks of the aIRT framework for PV system inspection. The related studies were reviewed for digital image processing (DIP), classification and deep learning techniques. Most of these studies were focused on autonomous fault detection and classification of PV plants using visual, IRT and aIRT images with accuracies up to 90%. On the other hand, only a few studies explored the automation of other parts of the procedure of aIRT, such as the optimal path planning, the orthomosaicking of the acquired images and the detection of soiling over the modules. Algorithms for the detection and segmentation of PV modules achieved a maximum F1 score (harmonic mean of precision and recall) of 98.4%. The accuracy, robustness and generalization of the developed algorithms are still the main issues of these studies, especially when dealing with more classes of faults and the inspection of large-scale PV plants. Therefore, the autonomous procedure and classification task must still be explored to enhance the performance and applicability of the aIRT method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
6
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
156003013
Full Text :
https://doi.org/10.3390/en15062055