Back to Search Start Over

Chromosome‐level genome assembly of the Chinese three‐keeled pond turtle (Mauremys reevesii) provides insights into freshwater adaptation.

Authors :
Liu, Jianjun
Liu, Siqi
Zheng, Kai
Tang, Min
Gu, Liping
Young, James
Wang, Ziming
Qiu, Yeyan
Dong, Jinxiu
Gu, Shengli
Xiong, Lei
Zhou, Ruanbao
Nie, Liuwang
Source :
Molecular Ecology Resources. May2022, Vol. 22 Issue 4, p1596-1605. 10p.
Publication Year :
2022

Abstract

Mauremys reevesii is an endangered freshwater turtle that symbolizes longevity in Chinese culture. Despite its importance, genetic studies of this species remain limited, with no genomic sequence reported to date. Here, we report a high‐quality, chromosome‐level genomic sequence of M. reevesii obtained using a combination of Nanopore and Hi‐C sequencing technologies. The 2.37 Gb M. reevesii genome was assembled from a total of ~226.80 Gb of Nanopore sequencing data. The M. reevesii genome contig N50 is 34.73 Mb, the highest value in published turtle genomes. In total, 18,238 genes were functionally annotated. The contigs were clustered and ordered onto 27 pseudochromosomes covering ~96.55% of the genome assembled with Hi‐C data. To explore genome evolution, synteny analysis was performed between M. reevesii (freshwater turtle) and Gopherus evgoodei (terrestrial turtle) genomes. In general, each chromosome of M. reevesii corresponded to one chromosome of Gopherus evgoodei, but some interchromosomal rearrangements occurred between the two species based on the assembled genomes. These interchromosomal rearrangements were further confirmed by mapping of the long‐read nanopore data to the assembly. The reconstructed demographic history showed varied effective population size among freshwater, marine and terrestrial turtles. We also discovered expansion of genes related to the innate immune system in M. reevesii that may provide defence against freshwater pathogens. The high‐quality genomic sequence provides a valuable genetic resource for further studies of genetics and genome evolution in turtles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1755098X
Volume :
22
Issue :
4
Database :
Academic Search Index
Journal :
Molecular Ecology Resources
Publication Type :
Academic Journal
Accession number :
156112635
Full Text :
https://doi.org/10.1111/1755-0998.13563