Back to Search Start Over

Improved ANFIS based MRAC observer for sensorless control of PMSM.

Authors :
Suryakant
Sreejeth, Mini
Singh, Madhusudan
Malik, Hasmat
Chaudhary, Gopal
Srivastava, Smriti
Source :
Journal of Intelligent & Fuzzy Systems. 2022, Vol. 42 Issue 2, p1061-1073. 13p.
Publication Year :
2022

Abstract

Detection of the rotor position is an important prerequisite for controlling the speed and developed torque in permanent magnet synchronous motor (PMSM). Even though use of incremental encoder and resolver is one of the popular schemes for sensing the rotor position in a PMSM drive, it increases the size and weight of the drive and reduces its reliability. Dynamic modeling of the motor and control algorithms are often used in sensor-less control of PMSM to estimate rotor position and motor speed. Most sensor-less control algorithms use machine parameters like torque constant, stator inductances and stator resistance for estimating the rotor position and speed. However, with accuracy of such estimation and the performance of the motor degrades with variation in motor parameters. Model reference adaptive control (MRAC) provides a simple solution to this issue. An improved Adaptive neuro-fuzzy inference system (ANFIS) based MRAC observer for speed control of PMSM drive is presented in this paper. In the proposed method adaptive model and adaptive mechanism are replaced by an improved ANFIS controller, which neutralize the effect of parametric variation and results in improved performance of the drive. The modeling equations of PMSM are used to estimate the rotor position for speed and torque control of the drive. Simulation studies have been carried out under various operating condition using MATLAB/Simulink. In addition, a comparative analysis of the conventional MRAC based observer and improved ANFIS based MRAC observer is carried out. It is observed that the proposed method results in better performance of the PMSM drive. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10641246
Volume :
42
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Intelligent & Fuzzy Systems
Publication Type :
Academic Journal
Accession number :
156139197
Full Text :
https://doi.org/10.3233/JIFS-189772