Back to Search Start Over

Radiation hydrodynamics modelling of kilonovae with SNEC.

Authors :
Wu, Zhenyu
Ricigliano, Giacomo
Kashyap, Rahul
Perego, Albino
Radice, David
Source :
Monthly Notices of the Royal Astronomical Society. May2022, Vol. 512 Issue 1, p328-347. 20p.
Publication Year :
2022

Abstract

We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation–hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection from the merger remnant and to the need to go beyond the assumption of spherical symmetry adopted in this work. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00358711
Volume :
512
Issue :
1
Database :
Academic Search Index
Journal :
Monthly Notices of the Royal Astronomical Society
Publication Type :
Academic Journal
Accession number :
156217661
Full Text :
https://doi.org/10.1093/mnras/stac399