Back to Search Start Over

Quasi‐Single Crystalline Cuprous Oxide Wafers via Stress‐Assisted Thermal Oxidation for Optoelectronic Devices.

Authors :
Xiao, Meng
Gui, Pengbin
Dong, Kailian
Xiong, Liangbin
Liang, Jiwei
Yao, Fang
Li, Wenjing
Liu, Yongjie
Li, Jiashuai
Ke, Weijun
Tao, Chen
Fang, Guojia
Source :
Advanced Functional Materials. 4/11/2022, Vol. 32 Issue 15, p1-10. 10p.
Publication Year :
2022

Abstract

P‐type semiconductor cuprous oxide (Cu2O) offers promising optoelectronic applications such as solar cells and photodetectors owing to its considerable absorption coefficients and high carrier mobility. However, polycrystalline Cu2O films with low carrier mobility resulting from excessive grain boundaries and structure disorder fail to meet the demands for these optoelectronic applications. Here a stress‐assisted thermal oxidation method to fabricate p‐type <110>‐textured quasi‐single crystalline Cu2O (c‐Cu2O) wafers with centimeter‐scale grains is developed. It is found that strain energy induced by thermal contact stress plays a critical role in crystal growth. The resultant <110>‐textured quasi‐single c‐Cu2O wafers exhibit excellent crystallinity with rocking curve having a low full width at half maximum of 0.022°, a low defect density of 2 × 1011 cm−3, a high mobility exceeding 100 cm2 V−1 s−1, and a long minority lifetime of 98.5 µs. Such quasi‐single c‐Cu2O wafers lead to efficient solar cells with an open‐circuit voltage of 0.95 V and highly responsive photodetectors with superior cycling stability. These results indicate not only the advancement of fabricating high‐quality Cu2O wafers upon controllable methodology but also the promising optoelectronic applications using p‐type metal oxide semiconductors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
32
Issue :
15
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
156252371
Full Text :
https://doi.org/10.1002/adfm.202110505