Back to Search Start Over

Reconstruction-Computation-Quantization (RCQ): A Paradigm for Low Bit Width LDPC Decoding.

Authors :
Wang, Linfang
Terrill, Caleb
Stark, Maximilian
Li, Zongwang
Chen, Sean
Hulse, Chester
Kuo, Calvin
Wesel, Richard D.
Bauch, Gerhard
Pitchumani, Rekha
Source :
IEEE Transactions on Communications. Apr2022, Vol. 70 Issue 4, p2213-2226. 14p.
Publication Year :
2022

Abstract

This paper uses the reconstruction-computation-quantization (RCQ)paradigm to decode low-density parity-check (LDPC) codes. RCQ facilitates dynamic non-uniform quantization to achieve good frame error rate (FER) performance with very low message precision. For message-passing according to a flooding schedule, the RCQ parameters are designed by discrete density evolution. Simulation results on an IEEE 802.11 LDPC code show that for 4-bit messages, a flooding Min Sum RCQ decoder outperforms table-lookup approaches such as information bottleneck (IB) or Min-IB decoding, with significantly fewer parameters to be stored. Additionally, this paper introduces layer-specific RCQ, an extension of RCQ decoding for layered architectures. Layer-specific RCQ uses layer-specific message representations to achieve the best possible FER performance. For layer-specific RCQ, this paper proposes using layered discrete density evolution featuring hierarchical dynamic quantization (HDQ) to design parameters efficiently. Finally, this paper studies field-programmable gate array (FPGA) implementations of RCQ decoders. Simulation results for a (9472, 8192) quasi-cyclic (QC) LDPC code show that a layered Min Sum RCQ decoder with 3-bit messages achieves more than a 10% reduction in LUTs and routed nets and more than a 6% decrease in register usage while maintaining comparable decoding performance, compared to a 5-bit offset Min Sum decoder. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00906778
Volume :
70
Issue :
4
Database :
Academic Search Index
Journal :
IEEE Transactions on Communications
Publication Type :
Academic Journal
Accession number :
156342899
Full Text :
https://doi.org/10.1109/TCOMM.2022.3149913