Back to Search Start Over

Polyhydroxybutyrate blends: A solution for biodegradable packaging?

Authors :
Popa, Marius Stelian
Frone, Adriana Nicoleta
Panaitescu, Denis Mihaela
Source :
International Journal of Biological Macromolecules. May2022, Vol. 207, p263-277. 15p.
Publication Year :
2022

Abstract

Poly (3-hydroxybutyrate) (PHB) is a valuable bio-based and biodegradable polymer that may substitute common polymers in packaging and biomedical applications provided that the production cost is reduced and some properties improved. Blending PHB with other biodegradable polymers is the most simple and accessible route to reduce costs and to improve properties. This review provides a comprehensive overview on the preparation, properties and application of the PHB blends with other biodegradable polyesters such as medium-chain-length polyhydroxyalkanoates, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate), poly(propylene carbonate) and poly (butylene adipate- co -terephthalate) or polysaccharides and their derivatives. A special attention has been paid to the miscibility of PHB with these polymers and the compatibilizing methods used to improve the dispersion and interface. The changes in the PHB morphology, thermal, mechanical and barrier properties induced by the second polymer have been critically analyzed in view of industrial application. The biodegradability and recyclability strategies of the PHB blends were summarized along with the processing techniques adapted to the intended application. This review provides the tools for a better understanding of the relation between the micro/nanostructure of PHB blends and their properties for the further development of PHB blends as solutions for biodegradable packaging. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
207
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
156451603
Full Text :
https://doi.org/10.1016/j.ijbiomac.2022.02.185