Back to Search Start Over

Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning.

Authors :
Cao, Cheng-Fei
Yu, Bin
Chen, Zuan-Yu
Qu, Yong-Xiang
Li, Yu-Tong
Shi, Yong-Qian
Ma, Zhe-Wen
Sun, Feng-Na
Pan, Qing-Hua
Tang, Long-Cheng
Song, Pingan
Wang, Hao
Source :
Nano-Micro Letters. 4/6/2022, Vol. 14 Issue 1, p1-18. 18p.
Publication Year :
2022

Abstract

Highlights: Graphene oxide-based hybrid networks were fabricated via introducing multi-amino molecule with triple roles (i.e., cross-linker, fire retardant and reducing agent). The optimized hybrid network with mechanically robust, exceptional intumescent effect and ultra-sensitive fire alarm response (~ 0.6 s) can be used as desirable smart fire alarm sensor materials. Exceptional fire shielding performances, e.g., ~ 60% reduction in peak heat release rate and limiting oxygen index of ~ 36.5%, are achieved, when coated such hybrid network onto combustible polymer foam. Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23116706
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Nano-Micro Letters
Publication Type :
Academic Journal
Accession number :
156495518
Full Text :
https://doi.org/10.1007/s40820-022-00837-1